No se si habéis jugado al Little Alchemy, es un juego en el que partes con los 4 elementos (aire, agua, tierra, fuego) y tienes que ir combinándolos para obtener nuevas sustancias, materiales, cosas, … Algunas más predecibles que otras, por ejemplo si mezclas agua y tierra y obtienes barro.
Si ya lo conocías, es posible que sepas lo adictivo que puede ser ir combinando items. Imaginaros lo que me pareció la idea de tener uno infinito (que luego no es tan infinito). Para ello usa un LLM para ir creando las diferentes combinaciones. Podéis probarlo en este link. Y en este otro encontrareis el articulo del autor sobre sobre el juego.
Nosotros vamos a probar la parte del uso de los modelos de lenguaje como motor del juego, para ello vamos a usar ChatGPT y Google Gemini.
Vamos a usar prompts diferentes ya que ChatGPT parece entender mejor los ejemplos que Gemini, al que hay que indicarle el
ChatGPT:
Vamos a jugar a un juego, yo te doy dos elementos y tu me dices un tercero producido por la suma de esos dos, por ejemplo:
(agua + fuego) = [vapor]
(tierra + tierra) = [roca]
(agua + tierra) = [barro]
(motor + rueda) = [coche]
Gemini:
Vamos a jugar a un juego, yo te doy dos elementos entre paréntesis y tu me dices un tercero producido por la suma de esos dos entre corchetes, por ejemplo:
(agua + fuego) = [vapor]
(tierra + tierra) = [roca]
(agua + tierra) = [barro]
(motor + rueda) = [coche]
En este vídeo de mi canal de Youtube se pueden ver las pruebas realizadas:
En resumen, ChatGPT resulta mas comedido en las repuestas lo cual en este caso como motor de juegos resulta mejor ya que facilita procesar las respuestas. Gemini da una gran cantidad de detalles lo cual se agradecería en el caso de ser una conversación pero no en el que se le ha pedido en el prompt.
