Microcontroladores e inteligencia artificial embebida

En los últimos años hay dos áreas que han avanzado rápidamente. La inteligencia artificial y todo lo que rodea los microcontraladores y sensores. Sin embargo los avances de una y otra parece separarlas. La I.A. se mueve hacia grandes redes neuronales que requieren grandes máquinas con mucha potencia y memoria. Si bien los microcontroladores están bajando de precio y aumentando sus capacidades quedan muy atrás de lo que necesitan las I.A. actuales.

Ambos están condenados a entenderse. Los sensores y actuadores  son la forma en que la I.A. interactúa con el mundo físico. Muchas aplicaciones de la I.A. viven cómodamente en mundos virtuales procesando y generando datos que no provienen directamente del mundo físico. Pero en muchos otros casos las grandes inteligencias en la nube y los pequeños microcontroladores están condenados a entenderse.

Muchas veces ese problema se soluciona añadiendo conectividad a los microcontroladores y que se comuniquen con la nube. Eso da lugar a dispositivos extremadamente tontos que necesitan conexión a un servidor a miles de kilómetros para encender o apagar una luz o poner la calefacción.

No hay nada malo en que los dispositivos estén conectados. Permite su control y monitorización de forma remota. Lo que no tiene sentido es que el dispositivo no pueda actuar sin conexión a internet. Internet debe de ser una fuente de datos más para el dispositivo. Un termostato puede mirar en internet la previsión del tiempo o el precio de la luz y usarlos como complemento para ajustar la temperatura de la casa pero sin ellos debes de seguir funcionando.

La inteligencia artificial es un área que se avergüenza de sus pasado. Tanto como para dejar de llamar “inteligencia artificial” a sus éxitos anteriores en cuanto aparece un nuevo enfoque. Por ejemplo la visión por computador de hace unos años está llena de algoritmos para reconocer formas, seguir objetos, calcular bordes….llegaron las redes neuronales convolucionales y todo eso quedó en un segundo plano.

Son algoritmos válidos y eficaces, no tan flexibles como el deep learning pero lo poco que hacen lo hacen suficientemente bien. Muchos de esos algoritmos se usan en entornos industriales. Lo mejor de todo es que los microcontroladores actuales pueden ejecutarlos. Podemos tener chips diminutos, de bajo consumo y barato ejecutando algoritmos que llevan décadas siendo usados (y por tanto mejorados) para realizar tareas que requieran cierta cantidad de inteligencia o de aprendizaje.

Si los microcontroladores no son suficientemente potentes los ordenadores también han bajado de precio y hay SOC que pueden actuar de cerebro cuando se requiera más potencia de calculo sin necesidad de abandonar tu red local. Y aún si no fuera suficiente, por ejemplo para reconocimiento de voz, se puede consumir como si fuera un servicio.

Lo ideal seria una arquitectura en la que los micontroladores fueran capaces de realizar las tareas básicas sin ayuda externa, por encima de ellos un hub que conecta y coordina los dispositivos y si aun asi se requiriera alguna tarea demasiado pesada para el hub se puede consumir como servicio. La idea de este modelo es que se “quede en casa” tanta parte del sistema como sea posible.

Ahora que tenemos una idea de la arquitectura ideal centrémonos en la inteligencia embebida dentro los microntroladores, se enfrenta a la siguientes limitaciones:

  • Memoria RAM, suele ser poca y hay que gestionarla bien.
  • Potencia de cálculo, los microcontroladores no están diseñados para grandes cálculos por lo que tienen importantes limitaciones.
  • Tiempo real, por lo general no pueden esperar demasiado a dar respuesta. Un sistema de seguridad no puede tardar un cuarto de hora en decidir si da la alarma.
  • Bateria, muchos dispositivos funcionan con baterías lo cual complica todo un poco más y que obliga a aplicar medidas para reducir el consumo y alargar su duración.
  • Poco espacio para modelos, los microcontroladores no tienen “un disco duro” donde almacenar grandes cantidades de datos. Eso limita el tamaño de los modelos y bases de datos a usar.

En resumen los algoritmos de inteligencia artificial que se llevan usando décadas pueden seguir siendo útiles en dispositivos de domótica en lugar de depender de sistemas en la nube.