En muchos artículos que leo se da por hecho que con los coches autónomos los accidentes desaparecerán y con ellos los seguros de coche que quedarán relegados a reparaciones y atención en carretera. Aunque muchas veces se de a entender lo contrario los primeros que celebrarían que esto ocurriese serían las aseguradoras, ellas ganan dinero cuando no hay accidentes. Desgraciadamente es una imagen irreal, los accidentes seguirán ocurriendo con los coches autónomos. En menor número ya que solo con eliminar los conductores cansados, temerarios, que miran el movil o bajo los efectos del alcohol o/y las drogas ya caerá bastante el número de accidentes. Pero seamos sinceros los buenos conductores, aquellos que están atentos, respetan todas las normas y son cautelosos lo hacen realmente bien. Los coches autónomos van a permitir gestionar y organizar el tráfico como nunca antes pero no van a ser perfectos. Vamos a usarlos como ejemplo para ver cuáles son los límites de la I.A.
Límites físicos para ejecución
Nuestro coche autónomo va circulando por una calle de un solo carril con coche aparcados a los lados cuando sin previo aviso aparece un viandante de detrás de una furgoneta a escasos tres o cuatro metros delante del coche. Por mucho que la I.A. frene la inercia va a arrastrar el coche hasta que atropelle al peatón, la otra opción es dar un volantazo y chocar con los coches aparcados. Ambas opciones son un accidente y es físicamente imposible evitarlo por muy eficaz que sea la I.A.
Límites físicos para el cálculo
Posiblemente el límite más conocido sea la capacidad de cálculo del sistema. Toda I.A. para ser útil ha de dar la respuesta en un tiempo finito y breve. Un sistema que tarde cuatrocientas millones de veces la vida del universo en dar una respuesta puede dar con la solución perfecta pero no resulta muy útil. Cuando juegas al ajedrez contra un software este responde con un movimiento suficientemente bueno pero no sé sabe si el mejor. En el caso de los coches autónomos cada elemento que tengan que «vigilar» aumenta la complejidad del problema (aumenta el espacio de búsqueda) y aumenta el tiempo que el sistema tiene que usar en detectarlo (reconocerlo, encontrar su límites, situarlo en el espacio, predecir su movimiento para anticiparse). Sin embargo el tiempo que tiene para reaccionar no aumenta.
Hay muchos más límites físicos, espacio, memoria, no-aleatoriedad, ….
Los sentidos nos engañan
O más bien «los sentidos están limitados». Descartes creía que no podemos confiar plenamente en los sentidos ya que nos pueden engañar. Lo cierto es que percibimos el mundo a través de ellos y nos dan una percepción muy limitada de la realidad. Los sensores tienen límites de alcance, precisión, exactitud, cometen errores y por supuesto se estropean dando medidas falsas
La sonda Schiaparelli se estrelló al tratar de aterrizar en Marte, la causa un error en las medidas de un sensor debido a que se saturo por el ruido indicaba que estaba bajo tierra así que apagó los motores.
Un fallo un sensor fue también la causa de los problemasdel Boeing 737 max.
Incertidumbre
Hay algoritmos para tratar con la incertidumbre. Pero generalmente acaban trabajando con probabilidades y tratando de decidir valorando beneficios y costes respecto a lo probable que sean. Pero algo sea improbable no quiere decir que no vaya a ocurrir.
Un coche autónomo puede suponer que es improbable que un ciervo cruce la carretera de repente y lo atropelle, todos conducimos sin plantearnos cada segundo si un animal va a saltar sobre nuestro capó, pero sabemos que no es imposible y que ha se han dado casos.
Funcionamos con la suposición de que lo improbable no va a pasar, el coche de al lado no va a abalanzarse sobre nosotros sin previo aviso (incluso los conductores agresivos dejan claras sus intenciones confiando que los demás cedan por precaución y les dejen cambiarse), que nadie va a ir circulando en dirección contraria por mi carril o que los demás van a respetar el semáforo en el cruce. Por supuesto que a veces estas reglas se incumplen pero es tan improbable que difícilmente se pueden tener en cuenta si no hay otras señales que nos hagan pensar que es probable (el conductor de al lado hace unas «eses» sospechosas mientras trata de mantenerse en el carril o el coche que llega al cruce va demasiado rápido como para frenar de golpe en el semáforo).
Aprende de la experiencia
El aprendizaje máquina trata de sacar unas reglas generales a partir de un montón de ejemplos particulares. El problema está en que la I.A. no va a poder tratar casos que no haya «visto». Por ejemplo una I.A. que ha aprendido a reconocer peatones puede fallar si el peatón va disfrazado de platano, por ejemplo. Eso no quiere decir que no tenga que frenar si se cruza, pero para la I.A. sería un obstáculo en la vía, no un peatón
Los agentes inteligentes están altamente especializados. Un programa que aprende a jugar al ajedrez no sirve para aprender a conducir. Los coches autónomos se mueven en el mundo real en una sociedad creada por humanos que tienen sus reglas de convivencia y un entorno muy complejo.
Por ejemplo algunos modelos de coches autónomos han tenido problemas con su forma de conducir porque marea a los pasajeros. Un conductor humano siente lo mismo que los pasajeros y evita sensaciones desagradables a los mismos (frenazos muy bruscos, giros repentinos, aceleraciones bruscas,…). Pero nadie había entrenado a la I.A. del coche para ello.
Otro ejemplo es el de un coche autónomo que buscando ahorrar dinero en lugar de aparcar en una zona de pago prefiera seguir circulando despacito de tal forma que el coste de circular sea menor que el del aparcamiento. Desde un punto de vista cívico eso es una barbaridad, consumir energía gratuitamente y empeorar el tráfico. Si la inteligencia no ha sido entrenada para tener en cuenta eso puede caer en soluciones erróneas.
Límites del sistema
Es parecido al punto de los límites físicos, pero en este caso los motivos no son físicos si no la organización o estructura del sistema. En muchos casos la solución es reorganizar el sistema pero eso queda más allá de las opciones del agente inteligente. Un ejemplo son algunos atascos. Hace años trabajé en un polígono industrial con solo dos salidas. Los viernes en verano la mayoría de las empresas salíamos entre las tres y las tres media de la tarde lo que suponía soportar atascos de 20 minutos. Y no hay forma de evitarlos. Aunque todos los coches fueran un agente inteligente y se coordinasen seguiría habiendo atascos. Se lo que estáis pensando: «Los coches se podrían coordinar para no intentar salir todos a la vez». Pero la consecuencia es la misma que un atasco, me va a costar 20 minutos salir de ahí. Me da igual si estoy atascado o esperando con el coche o con el coche dando vueltas o esperando que me avise al móvil que ya podemos irnos.
Riesgos calculados
En la vida real hay que tomar riesgos. Generalmente por dos motivos, falta de información e imposibilidad de conseguirla o que no hay más remedio para evitar una situación peor.
Un ejemplo es llegar a un cruce donde un camión mal aparcado tapa la visión. El coche autónomo no puede quedarse parado hasta que retiren el camión. Tendrá que moverse lentamente minimizando los riesgos pero asumiendo que ni el ve ni es visto y eso podría causar un accidente.
Decisiones irracionales
Actualmente la inteligencia artificial no puede decidir si no tiene una forma de comparar opciones. Eso no quiere decir que no pueda simplemente elegir al azar una opción. El mismo problema tiene si varias opciones son igual de buenas.
Al final hemos diseñado la I.A. para que haga decisiones racionales pero la vida humana esta llena de decisiones no racionales.