Operaciones con el histograma

A nivel de programación podemos ver el histograma de un conjunto de valores como un array donde se asocia a cada posible valor del conjunto a un indice donde se almanacena el número de veces que aparece ese valor en el conjunto de datos. Es habitual usarlos con imágenes. Así que vamos a usarlo como ejemplo, pero estos cálculos son aplicables para cualquier histograma.

Empezando por el caso más simple, el de una imagen en escala de grises con 8 bits de profundidad. Su histograma es el número de pixeles que hay de cada valor (0-255). Se calcula con un procedimiento tan simple como recorrer la imagen e ir contando el número de pixels de cada intensidad .

Histograma de un solo canal (escala de grises)
var histograma = [];
for(var i = 0; i < pixels.length; i++){
  histograma[pixels[i]] = histograma[pixels[i]]+1 || 0;
}

Para el caso de una imagen RGB lo que habitualmente se hace es calcular un histograma por cada canal, por lo que tendremos tres histogramas. Se podria hacer un histograma contando cada una de las posibles combinaciones que hay de los tres canales RGB, pero son mas de dieciséis millones y quedaba un histograma demasiado grande para ser manejable

Histograma RGB.

Vale, ya sabemos que es y como se calcula ¿Para qué demonios sirve? Para conocer la distribución de las distintas intensidades en la imagen. Por ejemplo, si la mayoría de los pixeles están en los valores bajos la imagen será oscura y posiblemente estará subexpuesta. Por el contrario si se concentran en los valores altos la imagen será luminosa y podría estar sobreexpuesta.

El histograma normalizado es un histograma cuyos valores se han ajustado para que la suma de todos sus valores sea 1. Se calcula dividiendo cada valor del histograma entre el número total de píxeles que tiene la imagen. Resulta útil para trabajar con histogramas que procedan de distintas fuentes ya que el número de píxeles puede no ser equivalente. Lo que indica es la proporción de píxeles sobre el total. Hay que recordar que el total de píxeles de la imagen es igual a la suma de los valores de todo el histograma

var total = 0;
for(var i = 0; i < histograma.lentgh; i++)}
  total += histograma[i];
}
var normalizado = [];
for(var i = 0; i < histograma.lentgh; i++)}
  normalizado[i] = histograma[i]/total;
}

El histograma acumulado indica cuantos píxeles tienen un valor igual o inferior a uno dado. Se calcula sumando a cada posición del histograma la suma de las anteriores.

var acumulado = [];
acumulado[0] = histograma[0];
for(var i = 1; i < histograma.lentgh; i++)}
  acumulado[i] = acumulado[i-1]+histograma[i];
}

Estadística

El histograma facilita los cálculos estadísticos sobre los valores de la imagen.

La media aritmética:

var media = total/histograma.lentgh;

La varianza:

var varianza = 0;
for(var i = 1; i < histograma.lentgh; i++)}
  varianza += Math.pow(histograma[i], 2);
}
varianza /= histograma.lentgh;
varianza -= Math.pow(media, 2);

La desviación tipica:

var desviacion = Math.sqrt(varianza)

La moda:

var moda = 0;
for(var i = 0; i < histograma.lentgh; i++)}
    if(histograma[i] &gt; histograma[moda]){
        moda = i;
    }
}

La mediana:

var suma = 0;
for(var i = 0; i < histogram.lentgh; i++)}
    suma = histograma[i];
    if(suma &gt; total/2){
        return i;
    }
}

Probabilidad

Para la probabilidad usaremos el histograma normalizado. Que representa como de probable es que un pixel cogido al azar tenga el valor indicado por el indice (0-255). Es decir normalizado[3] es la probabilidad que de que un pixel elegido al azar tenga valor 3

Probabilidad de que el pixel elegido al azar tenga un valor x:

var probabilidad = normalizado[x];

Probabilidad de que el pixel elegido al azar tenga un valor x, y o z:

var probabilidad = normalizado[x] + normalizado[y] + normalizado[z];

Probabilidad de que un pixel elegido al azar tenga un valor que sea distinto de x, y o z:

var probabilidad = 1 - (normalizado[x] + normalizado[y] + normalizado[z]);

Para calcular la probabilidad acumulada podemos calcular el histograma acumulado del histograma normalizado:

var acumuladoNormalizado = [];
acumuladoNormalizado[0] = normalizado[0];
for(var i = 1; i < normalizado.lentgh; i++)}
  acumuladoNormalizado[i] = acumuladoNormalizado[i-1]+normalizado[i];
}

Ahora pasa saber la probabilidad de que un pixel tomado al azar sea menor o igual que un valor x:

var probabilidad = acumuladoNormalizado[x];

Si queremos calcular que sea mayor que el valor x:

var probabilidad = 1 - acumuladoNormalizado[x];

Todos estos casos en lugar de como probabilidad se pueden interpretar como “porcentaje de pixeles de la imagen”. Por ejemplo: “Porcentaje de pixeles de la imagen que son mayores que 100” Seria:

var probabilidad = 1 - acumuladoNormalizado[100];

Unir histogramas

Una de las ventajas del histograma es que su cálculo es fácilmente paralelizable. Se puede dividir la imagen en varias partes y calcular el histograma de cada una de ellas en paralelo. Luego esos histogramas se pueden unir en uno solo de forma fácil. Simplemente basta con sumar cada uno de los indices del histograma:

var union = [];
 for(var i = 0; i < histograma1.lentgh; i++)}
   union[i] = histograma1[i]+histograma2[i]
 }

En el caso del histograma normalizado hay que sumar y dividir entre 2 para conservar al propiedad de que sume 1 en total.

var union = [];
 for(var i = 0; i < normalizado1.lentgh; i++)}
   union[i] = (normalizado1[i]+normalizado2[i])/2
 }